netherlands

SlaEe: center

Enabling Collaborative

Multi-Domain Applications:
A Blockchain-Based Solution with Petri

Net Workflow Modeling and
Incentivization

Reggie Cushing, Xin Zhou, Adam Belloum,
Paola Grosso, Tom van Engers and Cees de Laat
|EEE TPS 2023

Netherlands Organisation
for Scientific Research

netherlands

Slaue: center
Data logistics 4 logistics Data project

Creation of innovative solutions that allow
stakeholders to agree on how data is stored,
accessed, shared and transformed in a
controllable, enforceable, accountable,
auditable and goal-oriented fashion.

www.dl4ld.nl

netherlands

LIS center . .
Motivation

Multi-domain applications
are characterized by
applications such as
workflows that cross
domain boundaries.

Examples include airline,
healthcare and smart cities.

netherlands

LIS center
Digital Data

Marketplace

Organizations agree to
share data and compute
because of mutual benefit
to all parties.

We refer to such a platform as
a Digital Data Marketplace

or DDM

netherlands

LIS center
Digital Data

Marketplace

The question we address
here is:

How to coordinate
workflows without a
trusted 3" party and
incentivize collaboration

in @ multi-domain setting?

netherlands

LIS center
Digital Data

Marketplace

compute

What we propose is:

A Petri net based
coordination layer on top
of a blockchain layer.

netherlands

SlaEe: center

Overarching challenges of a DDM

- Multi-domain Policy Enforcement and Auditing
+ Multi-domain Identity and Trust Management
. Multi-domain Application/Workflows Management

. Multi-domain Collaborative Infrastructure

netherlands

Tl center

Coordination - Centralized Authority

Too much power given to a h
single entity. Everyone needs
to trust the authority.

Simple and efficient design.

_ J

netherlands

Tl center
Coordination - Decentralized Authority

\

No central authority,
coordination is distributed,
trust is distributed.

Complex and cumbersome
design. y

nnnnnnnnnnn

Shared states, shared truth

netherlands

center

Shared states, shared truth

Encoding multi-domain \

agreement as a Petri net.

Petri net markings denote
the current state of the
agreement.

The Petri net models the
obligations (tasks) at
different states.

What needs to be done
when and by whom.

/

netherlands
bSciencde=11:13

Operationalize components

netherlands

center

Hyperledger Fabric

Out of the box
provided by
Hyperledger

Fabric

netherlands

SlaEe: center
Petri net workflow on blockchaln

I
1 Coordination through smart contract/s

HNEENEEN
~—_ [~

Hyperledger fabric
layer

Container layer

netherlands

SlaEe: center
Petri net workflow on blockcham

|

Multidomain infra

| Graph interpreter

- Generic Petri net \
interpreter running on a
blockchain i.e. every peer is
running the executor.

- Atask needs certain amount
of tokens to fire

- Blockchain transactions
move tokens.

- When a task has enough
input tokens it will fire which
in turn generates blockchain

events. /

netherlands

SlaEe: center
Petri net workflow on blockcham

| Graph interpreter

Multidomain infra

/-Containers monitor the \

ledger for transition firings
to trigger a process inside a
container (the task).

- The container will make
blockchain transactions to

signal the task is completed

and Petri net places are

updated with tokens.

netherlands

ST center
Highlevel Fabric primitives

Participants
Users with an x509 certificate given by one of the organizations CA.
Assets
User defined data structs owned by participants.
Transactions
Read/Write to ledger.
Change asset ownership.
Chaincode
Javascript/go/java programs that run on Fabric network to implement
smart contracts.

etherlands

-FMCenter
Petri net elements to Fabric mapping

(e Aplace receives is a placeholder for tokens.
! e |tis owned by a domain.
e Represented as an asset.

netherlands

SlaEe: center
Petri net elements to Fabric mapping

O

4 e Tokens are passed between places.)
e They are owned by domains.
e Ownership is transferable.
e They are represented as assets.
e Tokens are typed e.g. data, authorization.)

netherlands

SlaEe: center
Petri net elements to Fabric mapping

Q (s

Transitions model off-chain actions. \
Transitions are what move tokens between places.
They are represented as an asset.

They are owned by domains.

They map to container functions.

A transition fire implies a container function

execution.)

netherlands

SlaEe: center
Petri net elements to Fabric mapping

Q 4 h

‘ e Edges connect the Petri net elements.
e The list of edges are represented as an asset.
e They indicate the required input tokens for a
transition and the number of output tokens.
e Atransition (container function) fires when the
required input tokens are ready.)

netherlands

SlaEe: center

Petri net contract API

Create|Update|Delete Token
Create|Update|Delete Place
Create|Update|Delete Transition
Create|Update|Delete Net

AcceptNet
- Organization sign the Petri net.

PutToken
- Moves a token, checks for transitions to fire.

netherlands

SlaEe: center
Client interface application

Off-chain interface

Builds wallet
User keys from organization CA.
Enrolls user.

Connect to a Fabric node
Calls contract API.
Listen for ledger events.

Calls container functions
Signs command with wallet keys

netherlands

2l center

Container functions

Organization 2

T1

MQ Topic i
Owner: org2]

1 T1 fires, event generated on blockchain.

2. Client Org 2 reads event; is owner of T1 (has keys).

3. Encrypts and signs message with wallet keys.

4. Publishes message on message queue server.

5. Worker reads message. Decrypts using wallet public key, (white list) performs action.
6. Client Org 2 updates ledger.

netherlands

SlaEe: center
Incentivization and reward

Off-chain (container functions) tasks are hard to track.

Token economy to modify behaviour.
Reward correct off-chain execution of tasks.
Implemented as part of the Petri net.
Peer audits validate the off-chain task.
On agreement an authorization token is generated.
This token is exchanged to invoke contracts.

The more you help the more you can ask for help

netherlands

bSciencd -1 g

Incentivization and reward

Organization 2 ! Organization 1

R e R PR E g T | R ———
' Organization 1 ! ! . . | “rganization 1/3
: © 9a e s MQ Topic B Validate : J
Bl Owner: org2 L AN T4

M call off-chain Sl)| Coneate
MR container function D o Token
' '+ Organization 3

Validate Reward Token

netherlands

SlaEe: center
Use Case

Model collaboration between Internet domains.
We emulate a simple Internet with 4 ASs.

We create a Hyperledger across the 3 domains.
The application says that:

“If any domain detects a DOS it ask others for help. The others
are obliged by contract to block offending IPs.”

This is encoded as a Petri Net using smart contracts.

netherlands

SlaEe: center
Use Case - network emulator

AS20

11.0.0.16/30
11.0.0.32/30

- =—=|30.3.3.0/24

- -4 11.0.0.4/30

[5]

25 AS200

- ==[200.2.0.0/16

netherlands

SlaEe: center
Use Case - network emulator

AS20

AS30

(R)- - - - 30.3.3.0/24
[2]

)
@-

11.0.0.16/30
11.0.0.32/30

Block IPs

AS200

(B)- - - -| 200.2.0.0/16

Block IPs

netherlands

Slaue: center

My Info
Organizations

Nets

BLOCK

Places

Tokens

AUTH_OrgiMSP_001
IP_TO_BLOCK

Transitions

as100r1_b
ddos_alert
ddos_defense
gen_token_o02
gen_token_o4
validator_o11

validator_o12

Petrinet Contracts - Org1MSP

BLOCK-VO11

BLOCK-T0D31

BLOCK-P002

BLOCK-V012

BLOCK

BLOCK-FT003

BLOCK-T0032

BLOCK-V021

BLOCK-T0041

BLOCK-P003 BLOCK-as30r1_b

BLOCK-IP_LIST BLOCK-V022

K-gen_toker BLOCK-FT004

BLOCK-T0042

BLOCK-AUTH_NETWORK BLOCK-V031

BLOCK-T0011

BLOCK-V032

BLOCK-FT001

BLOCK-T0012

BLOCK-V041

BLOCK-T0021

BLOCK-V042

BLOCK-FT002

BLOCK-T0022

netherlands

Slaue: center

My Info
Organizations

Nets

BLOCK

Places

Tokens

AUTH_OrgiMSP_001
IP_TO_BLOCK

Transitions

as100r1_b
ddos_alert
ddos_defense
gen_token_o02
gen_token_o4
validator_o11

validator_o12

Petrinet Contracts - Org1MSP

BLOCK-IP_LIST

BLOCK-AUTH_NETWORK

BLOCK-P002

BLOCK-P003

BLOCK-VO11

BLOCK-T0D31

I

BLOCK-FT003

BLOCK-T0032

BLOCK-V012

BLOCK-V021

BLOCK-V022

Container functions

\

BLOCK-FT004

O

Action phase

On routers
(Block IPs)

BLOCK-gen_t o BLOCK-FT001

BLOCK-T0012

BLOCK-V032

BLOCK-V041

BLOCK-T0021

b

BLOCK-FT002

BLOCK-T0022

BLOCK-V042

netherlands

Slaue: center

My Info
Organizations

Nets

BLOCK

Places

Tokens
AUTH_OrgiMSP_001
IP_TO_BLOCK

Transitions

as100r1_b
ddos_alert
ddos_defense
gen_token_o02
gen_token_o4
validator_o11

validator_o12

Petrinet Contracts - Org1MSP

BLOCK-I]

BLOCK-AUTH_

BLOCK-P002

Auditing phase
Peer cross validation

BLOCK-VO11

BLOCK-T0D31

BLOCK-V012

BLOCK-FT003

BLOCK-T0032

BLOCK-V021

BLOCK-T0041

BLOCK-V022

LOCK-gen_toker BLOCK-FT004

BLOCK-T0042

BLOCK-T0011

BLOCK-V032

BLOCK-gen_token_o: BLOCK-FT001

BLOCK-T0012

BLOCK-V041

BLOCK-T0021

BLOCK-V042

BLOCK-FT002

BLOCK-T0022

netherlands

Slaue: center

Petrinet Contracts - Org1MSP

My Info

Organizations

Nets

BLOCK

Places

—
Tokens 2
BLOCK-VO11 BLOCK-validator BLOCK-T0D31

i
e | =O\ LOCK-gen_token|ll3 BLOCK-FT003
BLOCK-V012 BLOCK-validator_o21 5;632/ : I

AUTH_OrgiMSP_001

IP_TO_BLOCK BLOCK-P002

Transitions

!

as100r1_b

/

ddos_alert

ddos_defense

Reward phase
Reward tokens for
correct execution of
container function

gen_token_o2 BLOCK-T0041

gen_token_o4

i BLOCK-FT004
validator_o11

7
s

validator_o12

BLOCK-IP_LIST BLOCK-T0042

BLOCK-AUTH_NETWORK BLOCK-V031 BLOCK

BLOCK-T0011

!

BLOCK-V032 BLOCK-validator_o41 BLOCK-T0012 : I

!

i

BLOCK-V041 BLOCK-validator_o32 BLOCK-T0021

BLOCK-V042 BLOCK-validator_o4 BLOCK-T0022 : I

BLOCK-FT002

P
:

i

netherlands

LI center
hyperledger layer

off-chain layer

netherlands

center

certification

authority

hyperledger layer

off-chain layer

netherlands

LI center
hyperledger layer

orderer

off-chain layer

netherlands

center

smart
contract

hyperledger layer

off-chain layer

netherlands

LI center
hyperledger layer

interface +
wallet

off-chain layer

netherlands

LI center
hyperledger layer

message
queue

infrastructure

i i off-chain layer

etherlands

n
center

hyperledger layer

netherlands

SlaEe: center
Remarks

Decentralizing trust is complex
A simple use-case is already complicated
Petri nets are not user friendly
Intermediate modeling
Translating other workflows such BPM to Petri nets
Container functions need to be audited
Incentivization requires peers to validate off-chain functions
Per use-case validation functions
Still not privacy can be improved
Transactions expose data to other organizations.

netherlands

SlaEe: center
Future privacy considerations

Zero knowledge asset transfers

Adding privacy at the transaction level.
Not disclosing data to whom it is not meant.
Role of auditor as a participant.

Auditor assigned to organization only sees relevant transactions.

netherlands

SlaEe: center
Conclusions

Petri nets on blockchain provide an abstraction
- Model contracts vs hard coding
- Validate Petri net against higher level workflow e.g. BPM

Chaincode programming is a different paradigm.
- Logic is modelled as reads and writes to a ledger.
- Datais replicated on all peers.
- Execution is done multiple times
- Execution only happens as a reaction to a user call.

netherlands

center

Reach out
Reggie
Xin

Github

DLl4LD site

