
Enabling Collaborative
Multi-Domain Applications:

A Blockchain-Based Solution with Petri
Net Workflow Modeling and

Incentivization

Reggie Cushing, Xin Zhou, Adam Belloum,

Paola Grosso, Tom van Engers and Cees de Laat

IEEE TPS 2023

Data logistics 4 logistics Data project

Creation of innovative solutions that allow
stakeholders to agree on how data is stored,
accessed, shared and transformed in a
controllable, enforceable, accountable,
auditable and goal-oriented fashion.

www.dl4ld.nl

Multi-domain applications
are characterized by
applications such as
workflows that cross
domain boundaries.

Examples include airline,
healthcare and smart cities.

Motivation

Digital Data
Marketplace

Organizations agree to
share data and compute
because of mutual benefit
to all parties.

We refer to such a platform as
a Digital Data Marketplace
or DDM

● When; is the event.
● Do; is the compute.
● With; is the data

The question we address
here is:

How to coordinate
workflows without a
trusted 3rd party and
incentivize collaboration
in a multi-domain setting?

Digital Data
Marketplace

data

compute data

event

● When; is the event.
● Do; is the compute.
● With; is the data

What we propose is:

A Petri net based
coordination layer on top
of a blockchain layer.

Digital Data
Marketplace

data

compute data

event

Overarching challenges of a DDM

• Multi-domain Policy Enforcement and Auditing

• Multi-domain Identity and Trust Management

• Multi-domain Application/Workflows Management

• Multi-domain Collaborative Infrastructure

Coordination - Centralized Authority

Too much power given to a
single entity. Everyone needs
to trust the authority.

Simple and efficient design.

Coordination - Decentralized Authority

No central authority,
coordination is distributed,
trust is distributed.

Complex and cumbersome
design.

Shared states, shared truth

Domain A Domain B

Shared states, shared truth

Domain A Domain B

Encoding multi-domain
agreement as a Petri net.

Petri net markings denote
the current state of the
agreement.

The Petri net models the
obligations (tasks) at
different states.

What needs to be done
when and by whom.

Operationalize components

Domain A Domain B

DBs, Compute, Identity,
Authentication,
Authorization, APIs,
Consensus, CAs,
Networking, Auditing…

DBs, Compute, Identity,
Authentication,
Authorization, APIs,
Consensus, CAs,
Networking, Auditing…

Hyperledger Fabric

Domain A Domain B

DBs, Compute, Identity,
Authentication,
Authorization, APIs,
Consensus, CAs,
Networking, Auditing…

DBs, Compute, Identity,
Authentication,
Authorization, APIs,
Consensus, CAs,
Networking, Auditing…

Out of the box
provided by
Hyperledger

Fabric

Multidomain infra

Petri net workflow on blockchain

Graph interpreter

Coordination through smart contract/s

Hyperledger fabric
layer

Container layer

Functional containers

Multidomain infra

Petri net workflow on blockchain

Graph interpreter

Coordination through smart contract/s

- Generic Petri net
interpreter running on a
blockchain i.e. every peer is
running the executor.
- A task needs certain amount
of tokens to fire
- Blockchain transactions
move tokens.
- When a task has enough
input tokens it will fire which
in turn generates blockchain
events.

Functional containers

Multidomain infra

Functional containers

Petri net workflow on blockchain

Graph interpreter

Coordination through smart contract/s

- Containers monitor the
ledger for transition firings
to trigger a process inside a
container (the task).
- The container will make
blockchain transactions to
signal the task is completed
and Petri net places are
updated with tokens.

Highlevel Fabric primitives

• Participants
• Users with an x509 certificate given by one of the organizations CA.

• Assets
• User defined data structs owned by participants.

• Transactions
• Read/Write to ledger.
• Change asset ownership.

• Chaincode
• Javascript/go/java programs that run on Fabric network to implement

smart contracts.

Petri net elements to Fabric mapping
● A place receives is a placeholder for tokens.
● It is owned by a domain.
● Represented as an asset.

Petri net elements to Fabric mapping

● Tokens are passed between places.
● They are owned by domains.
● Ownership is transferable.
● They are represented as assets.
● Tokens are typed e.g. data, authorization.

Petri net elements to Fabric mapping

● Transitions model off-chain actions.
● Transitions are what move tokens between places.
● They are represented as an asset.
● They are owned by domains.
● They map to container functions.
● A transition fire implies a container function

execution.

Petri net elements to Fabric mapping

● Edges connect the Petri net elements.
● The list of edges are represented as an asset.
● They indicate the required input tokens for a

transition and the number of output tokens.
● A transition (container function) fires when the

required input tokens are ready.

Petri net contract API

• Create|Update|Delete Token
• Create|Update|Delete Place
• Create|Update|Delete Transition
• Create|Update|Delete Net
• AcceptNet

• Organization sign the Petri net.

• PutToken
• Moves a token, checks for transitions to fire.

Client interface application

• Off-chain interface
• Builds wallet

• User keys from organization CA.
• Enrolls user.

• Connect to a Fabric node
• Calls contract API.
• Listen for ledger events.
• Calls container functions

• Signs command with wallet keys

Organization 1 Organization 2

Container functions

T1

MQ Topic
Owner: org2

Client
Org 1

Client
Org 2

MQ
Server1

2 3
4

1. T1 fires, event generated on blockchain.
2. Client Org 2 reads event; is owner of T1 (has keys).
3. Encrypts and signs message with wallet keys.
4. Publishes message on message queue server.
5. Worker reads message. Decrypts using wallet public key, (white list) performs action.
6. Client Org 2 updates ledger.

6
5

Worker

Incentivization and reward

• Off-chain (container functions) tasks are hard to track.
• Token economy to modify behaviour.

• Reward correct off-chain execution of tasks.
• Implemented as part of the Petri net.

• Peer audits validate the off-chain task.
• On agreement an authorization token is generated.
• This token is exchanged to invoke contracts.

• The more you help the more you can ask for help

Organization 1

Organization 2

Incentivization and reward

T1

MQ Topic
Owner: org2

Call off-chain
container function

Organization 1

T2

Validate
Organization 1/3

T4

Generate
TokenOrganization 3

T3

Validate Reward Token

Use Case

• Model collaboration between Internet domains.
• We emulate a simple Internet with 4 ASs.
• We create a Hyperledger across the 3 domains.
• The application says that:

“If any domain detects a DOS it ask others for help. The others
are obliged by contract to block offending IPs.”

• This is encoded as a Petri Net using smart contracts.

Use Case - network emulator

Use Case - network emulator

Ddos alert!

Block IPs

Block IPs

Block IPs

Block IPs

Action phase
Container functions

On routers
(Block IPs)

Auditing phase
Peer cross validation

Reward phase
Reward tokens for

correct execution of
container function

off-chain layer

interface layer

hyperledger layer

peer +
ledger

off-chain layer

interface layer

hyperledger layer

certification
authority

off-chain layer

interface layer

hyperledger layer

orderer

off-chain layer

interface layer

hyperledger layer

smart
contract

off-chain layer

interface layer

hyperledger layer

interface +
wallet

infrastructure
off-chain layer

interface layer

hyperledger layer

message
queue

off-chain layer

interface layer

hyperledger layer

router

Remarks

• Decentralizing trust is complex
• A simple use-case is already complicated

• Petri nets are not user friendly
• Intermediate modeling
• Translating other workflows such BPM to Petri nets

• Container functions need to be audited
• Incentivization requires peers to validate off-chain functions
• Per use-case validation functions

• Still not privacy can be improved
• Transactions expose data to other organizations.

Future privacy considerations

• Zero knowledge asset transfers
• Adding privacy at the transaction level.
• Not disclosing data to whom it is not meant.
• Role of auditor as a participant.
• Auditor assigned to organization only sees relevant transactions.

Conclusions

• Petri nets on blockchain provide an abstraction
• Model contracts vs hard coding
• Validate Petri net against higher level workflow e.g. BPM

• Chaincode programming is a different paradigm.
• Logic is modelled as reads and writes to a ledger.
• Data is replicated on all peers.
• Execution is done multiple times
• Execution only happens as a reaction to a user call.

Reggie R.Cushing@esciencecenter.nl

Xin X.Zhou@uva.nl

Reach out

Github
github.com/dl4ld/petrinet

Dl4lD site
DL4LD.nl

