
A policy compliance detection architecture for Digital Data
Marketplaces (DDM)

Lu Zhang, Reginald Cushing, Cees de Laat, and Paola Grosso

MultiScale Networked Systems (MNS) lab, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands

Email: l.zhang2@uva.nl, r.s.cushing@uva.nl, delaat@uva.nl, p.grosso@uva.nl

The project Data Logistics for Logistics Data (DL4LD)1 aims to facilitate secure and trustworthy
data sharing among Dutch logistic partners with the concept of Digital Data Marketplaces (DDM).
With the definition of our project, a DDM is a digital infrastructure that facilities policy-driven
data exchange applications. For instance, different DDM parties may want to gather their local data
together and run a machine learning (ML) algorithm on their joint data, so that they can gain benefits
from a more accurate prediction model. Those parties could be competing, so they concern about the
confidentiality of their data and whether the computing result is trustworthy. In a DDM, there is a
unique identifier for each data and compute object. The parties agree on permissible actions on specific
data and compute objects and express them into a policy. The compute objects are containerised for
better portability. A container image is a lightweight, executable package including source code,
program runtime and libraries. It is crucial to build components in the digital infrastructure that
enforces the policy in the data exchange application.

At ICT.Open, we will present an architecture that can effectively detect policy compliance with
Linux system call monitoring during the execution stage. The Linux system calls are an interface
between an application and the Linux kernel. As illustrated in Figure 1, the architecture comprises
multiple modules, a Profile Generation and Validation module (in purple), a OC-SVM based distributed
intrustion detection systems (IDS) module (in orange) and a Sanitization module (in red). They
collaboratively enforce the policy in the execution stage by analysing system calls generated by a
running container. For each compute object, a profile and an anomaly detection model are built or
trained if it was used for the first time. These initial processes are conducted in a secure environment,
our trusted 3rd party (in yellow), and they are distributed to endpoint execution platforms (in blue)
in a secure manner.

First, we implement a Profile Generation and Validation module that can discriminate the algo-
rithm running inside the container only by externally monitoring. We profile runtime behaviours of a
specific containerised algorithm with frequency distributions of n-grams of system call symbols. In a
endpoint execution platform, it computes the similarity, cross entropy, between the observed system
calls and the profile of the authorised algorithm. The computed results are allowed to leave the con-
tainer only if they match. This module helps to ensure that only the authorised algorithm can access
on a particular data object. [1].

Secondly, we implement a distributed real-time intrusion detection system. We adopt One Class
Support Vector Machine (OC-SVM) as the anomaly detection algorithm due to its capability of
dealing with complex non-linear problems. To detect malicious behaviours in a real-time manner, the
streaming system calls are separated into segments before being mapped into feature vectors. We also
apply the signature-based methodology to reduce false alarms. [2]

To adapt to the dynamic characteristics of the algorithm behaviour, the anomaly detection model
is retrained whenever new data is available, shown as the red arrows in Figure 1. This may provide

1https://www.dl4ld.nl/

1



Endpoint Execution
Platform (Node 2)

Sanitization
Profile

Generation 
Train the Initial

IDS Model

Code Verification

Model
Retraining

Profile IDS model

Encryption and Sign

Profile/IDS 
Database

Container

Monitoring
Module Verification 

Real Time
IDS

Endpoint
Execution Platform

IDS model

Profile
Decryption and Verify

System Calls

Poisoning Attack

Endpoint Execution
Platform (Node 1)

Figure 1: The architecture of a DDM policy enforcement component.

opportunities for adversaries to carry out attacks by poisoning the collected data and degrade the
IDS’ performance. It is vital to ensure that the retraining data are attack-free. Last but not least,
we implement a Sanitization module in a trusted 3rd party to filter out malicious samples. The
sanitization process is based on the DBSCAN clustering algorithm because it does not require any
pre-knowledge of the normal data and can separate clusters of any shape.

In addition, We will present our experiments results that demonstrate the effectiveness of our
proposed architecture with a DL4LD use case.

References
[1] L. Zhang, R. Cushing, R. Koning, C. de Laat, and P. Grosso, “Profiling and discriminating of

containerized ml applications in digital data marketplaces (ddm).” in ICISSP, 2021, pp. 508–515.

[2] L. Zhang, R. Cushing, C. Koning, and P. Grosso, “A real-time intrusion detection system based
on oc-svm for containerized applications,” in The 24th IEEE International Conference on Com-
putational Science and Engineering, 2021, pp. 508–515.

2


