Modeling of Collaborations in Digital Marketplaces

Lu Zhang Systems and Networking Lab University of Amsterdam

The more data, the better: aircraft maintenance

- Predict need for aircraft maintenance with AI/ML algorithms
- Better aircraft data availability contributes to more reliable result
- How can AL/ML algorithm developers access aircraft data from multiple competing Airline companies?

Digital Marketplace (DMP)

- Apply Digital Marketplace concepts to facilitate trustworthy data sharing for a particular purpose
- A Digital Marketplace is a membership organization supporting a common goal
 - e.g. enable data sharing to increase value and competitiveness of AI/ML algorithms

Collaboration Models

• Market members arrange **digital agreements** to exchange data and compute for a particular purpose under specific conditions

Collaboration models

- Describe the rules of how data and compute are shared, accessed and used based on digital agreements
- Terminologies:
 - Digital Data Marketplace \rightarrow Collaboration Archetypes
 - Potential Customer \rightarrow Application Request

Collaboration Archetypes

Application Request

- Collaborating computing on 3 distributed data harbors
 - KLM and Air France do not trust each and employ a trusted 3rd party to send data and compute for processing
- Hard/ Soft Requests
 - Hard \rightarrow non-negotiable and must be fulfilled
 - Soft \rightarrow Adjustable to better fit any existing archetype

How to formalize multi-party collaborations generically?

- Parties in the DDM may collaborate across a number of *scopes*: *data, algorithm and result*
- In each scope, a number, which we call *collaboration level*, describes the concrete approach of asset sharing between any source and target
 - E.g. Filetransfer or Remote filesystem mount
- This model is *generic*, more scopes and collaboration levels could be extended

How to match application requests to collaboration archetypes?

- Map any collaboration model as a point in discrete space relative distance
 - Currently adopted distance calculation method

- Pre-processing block for more commensurate comparison
 - Reduce the influence of how we assign those participating parties in the matrices
 - Aim to find an optimum fitness between two collaboration models
- The *closeness* of application request and the supported collaboration archetypes can be identified

How to match application requests to DMP archetypes?

Evaluation metrics of a DMP

- Motivation:
 - Provide a-priori information for DMP providers and potential customers
 - Allow for comparison and intelligent selection of competing DMPs
- Evaluation metrics

How to quantize? -- Coverage

- A higher *coverage is* achieved by lowering customer satisfaction degree
 - Pre-define a tolerant distance D_A
 - Covered area of each archetype is modeled effectively as a sphere with radius D_A
 - Total covered area is the union of individual covered area

• An optimization algorithm for coverage calculation is designed for complexity reduction

How to use the proposed metrics for intelligent selection?

- Each DMP may support multiple collaboration archetypes
- Compute metrics with a specific application request
- Select the optimal DMP perfect match by minimum modification effort

Precision → Exact match

Flexibility → Possibility to extend application request *App Extensibility* → Exact match by extending application request

DMP Extensibility → Exact match by archetype recombination

Collaboration archetypes in project DL4LD

Archetype II

Archetype VII

Archetype III

Archetype IV

Archetype VI

Intelligent selection of DMPs

	Hard Requests: Air France and KLM trust Dell and are
١	willing to send their data
	Soft Requests : Air France prefers direct data transfer and
I	KLM prefers remote mounting

DMP	Supported Archetype Trust Models
DMP_1	$\{1, 2, 3, 4, 7\}$
DMP_2	$\{1, 2, 3, 5, 7\}$
DMP_3	$\{1, 2, 3, 5, 6\}$
DMP_4	$\{1, 3, 4, 5, 7\}$
DMP_5	$\{2, 3, 4, 6, 7\}$

	DMP_1	DMP_2	DMP_3	DMP_4	$\rm DMP_5$
Coverage (1e–12)	4.29	4.28	4.26	3.69	3.65
Precision	0.83	0.83	0.83	0.83	-0.67
Flexibility	0.06	0.06	0.06	0.06	0.06
Application extensibility	0.5	0.5	0.5	0.5	$-\infty$

DMP₁ wins for the specific application request!

Conclusions

- Formalize multi-party collaborations into mathematical representations
- Ability to match and identify closeness between any application request and collaboration archetypes
 - Map archetypes and application requests together into a discrete space
- Define multiple generic metrics for DMP evaluation
 - Demonstrate effectiveness of metrics with DL4LD use case
 - Intelligent selection of DMP candidates

Future work

- Further improve multi-party collaboration modeling methodology
 - Enrich defined scopes and collaboration levels, e.g. locations information, hardware resource
 - Applicable for more concrete and complex use case
 - Include cost into the model
- Multi-criteria decision making by incorporating security perspective
- Manage to detect the concrete blocks in the archetype that produce the mismatch
 - Working toward a zero distance

Thank You & Any Questions?

https://www.dl4ld.net/ https://www.dl4ld.nl/

